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Abstract. This study presents the development of an automated aerosol typing model utilizing Mie-Raman-fluorescence lidar 

data collected by LILAS, located on the ATOLL platform in Lille, France. The proposed model, FLARE-GMM, employs a 10 

Gaussian Mixture Model trained on a dataset spanning from early 2021 to the end of 2023. FLARE-GMM is able to distinguish 

between dust, urban and biomass burning aerosols by using the 𝑃𝐿𝐷𝑅  and the fluorescence capacity as well as RH, all 

measured with LILAS. To ensure accurate model training, cases were manually selected to include only pure aerosol layers, 

as mixed aerosols are not accurately modelled by GMM. Following the training phase, the model's performance was evaluated 

by investigating extreme events in which the aerosol type is not ambiguous. This approach was also completed with the use of 15 

a test dataset on which FLARE-GMM was compared to NATALI, another automatic aerosol typing model based on neural 

networks using lidar data. The results demonstrated that FLARE-GMM shows promise in accurately identifying aerosol types, 

indicating its potential for classifying aerosols in a variety of situations. Finally, FLARE-GMM was used to estimate the 

aerosol types present in Lille's atmosphere throughout the entire dataset from early 2021 to the end of 2023. A statistical 

analysis of these results was conducted, further underscoring the model's capability in automated aerosol classification. 20 
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1 Introduction 

Aerosols are critical components of the atmosphere, significantly influencing the Earth climate system. They are emitted both 

by natural sources, such as pollen or marine aerosols, and anthropologic sources, like traffic or fossil fuel burning. In addition 25 

to their effects on health, they interact with radiation, directly affecting the Earth radiative budget (direct effect). Their presence 

also disrupts the water cycle, affecting cloud properties and further modifying the Earth radiative balance through indirect and 

semi-direct effects (Twomey, 1959; Johnson et al., 2004; Seinfeld et al., 2016; Thorsen et al., 2020; Herbert et al., 2020). 
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Compared to other climate forcers, aerosols have much shorter lifetimes in the atmosphere. Consequently, their distribution 

across the globe is highly heterogeneous and heavily dependent on their sources as well as the atmospheric dynamics (Inness 30 

et al., 2019; Intergovernmental Panel on Climate Change (IPCC), 2023).  

Therefore, observations are essential to monitor their presence around the globe. Spaceborne instruments allow us to cover 

global scale at the cost of strong technical constraints and high expenses. They are complemented by ground-based systems 

which are more versatile and cheaper to develop, but that are limited to local measurements. To compensate this drawback, 

ground based instruments work with networks such as AERONET (AErosol RObotic NETwork), established by NASA 35 

(National Aeronautics and Space Administration) and PHOTON (PHOtométrie pour le Traitement Opérationnel de 

Normalisation Satellitaire), which gathers ground-based observations to retrieve aerosol properties around the globe. Among 

ground-based instruments, in situ systems like the Scanning Mobility Particle Sizer (SMPS), Aerosol Chemical Speciation 

Monitor (ACSM), and nephelometers can directly measure particle microphysical, chemical, and optical properties, enabling 

accurate characterization of aerosols (Anderson and Ogren, 1998; Ng et al., 2011; Coquelin et al., 2013). However, these 40 

instruments are limited to measurements at their specific locations, restricting their ability to characterize the entire atmosphere. 

To address this limitation, remote sensing instruments such as photometers and lidars are used. Photometers measure integrated 

aerosol optical properties over the atmospheric column, while lidars provide profiles of aerosol optical properties throughout 

the atmosphere. From such measurements, non-analytical inversion models and processes, such as MLE (Maximum 

Likelihood Estimation) or EB (Empirical Bayes) approaches, enable the determination of the microphysical and chemical 45 

properties of the particles (Warren and Vanderbeek, 2007; Chang et al., 2022). Lately, with the advancement of these 

instruments and the automation of measurement processes, the volume of data has increased exponentially. This surge in data 

availability has facilitated the development of data-driven inversion approaches, such as machine learning and deep learning, 

for the retrieval of aerosol properties from remote sensing measurements (Nicolae et al., 2018; Lolli, 2023). 

LILAS (Lille Lidar for Atmospheric Study) is a Mie-Raman lidar located at the ATOLL (ATmospheric Observations at LiLLe) 50 

platform in Lille (France), managed by the Laboratoire d’Optique Atmosphérique (LOA), and is employed in the frame of 

EARLINET/ACTRIS-FR (European Aerosol Research Lidar Network/Aerosols, Clouds and Trace Gases Research 

Infrastructure-France). The unique feature of this instrument is its ability to measure atmospheric fluorescence induced by the 

laser pulse emission. This type of measurement is still relatively novel and is found in only a few atmospheric lidars (Rao et 

al., 2018; Reichardt et al., 2022; Gast et al., 2024). However, it shows great promise due to its high sensitivity to the bio-55 

molecules, like chlorophyll, contained in some aerosols. This sensitivity enables for the discrimination between aerosols with 

high biogenic content, such as pollens and biomass burning smoke, from those with low biogenic content, such as desert dust 

or urban aerosols, allowing us to perform aerosol typing (Immler et al., 2005; Sugimoto et al., 2012; Veselovskii et al., 2020).  

Another particularity of LILAS is the large volume of data it generates thanks to its high level of automation, enabling for 

nearly continuous operation. Additionally, it has been measuring fluorescence signals by night since 2019 and has been 60 

simultaneously measuring water vapor by night since early 2021, resulting in a substantial dataset spanning from the early of 

2021 to the end of 2023 of night-time LILAS measurements available for this study.  
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The growing amount of data acquired by LILAS, combined with other limitations which will be discussed later, motivated us 

to work on an automatic aerosol typing method in order to improve the manual approach described in Veselovskii et al. (2022). 

The objective of this work is to use the specificities of the LILAS instrument to train a new machine learning algorithm we 65 

have called FLARE-GMM (Fluorescence Lidar Aerosol REcognition with Gaussian Mixture Model). Its objective is to 

automatically perform aerosol typing out of LILAS measurements. The first part of this paper presents the instrument and 

FLARE-GMM, highlighting its distinctive features and advantages compared to other aerosol typing models. The second part 

details the training phase of FLARE-GMM, describing the methods used to select the model hyperparameters and to assemble 

the training set. The third part evaluates the model performance by analyzing extreme events and comparing its results with 70 

those of NATALI (Neural Network Aerosol Typing Algorithm Based on Lidar Data), another automatic aerosol typing 

algorithm using lidar data. Finally, before concluding and proposing future directions, a statistical study of the aerosol types 

present in Lille atmosphere obtained with FLARE-GMM is presented. 

2. Instrument and model presentation 

2.1 LILAS instrument and data 75 

LILAS is a Mie-Raman lidar located at the ATOLL platform in Lille, France (50.611° N, 3.138° E). It’s emission part consists 

in a Nd:YAG, doubled and tripled in frequency, operating at a repetition rate of 20 Hz with a pulse energy of 100 mJ at 355 

nm. The lidar system is configured in a 3β + 2α + 3δ arrangement. This setup allows us to retrieve the elastic backscatter 

coefficients and the particle linear depolarization ratios of aerosols at the wavelengths of emission (1064 nm, 532 nm, and 355 

nm). Additionally, it measures the extinction coefficients of aerosols at 532 nm and 355 nm. The instrument also includes a 80 

Raman channel centered at 408 nm for monitoring atmospheric humidity and a detection channel ranging from 444 nm to 488 

nm devoted to laser-induced atmospheric fluorescence observation. As already mentioned, this instrument is highly automated 

and therefore operates almost continuously when it is not raining. 

The gathered lidar profiles are inverted using the modified Raman inversion method (Ansmann et al., 1992; Veselovskii et al., 

2022) used to obtain quicklooks of the elastic backscatter coefficient (𝛽𝜆) and the Particular Linear Depolarization Ratio 85 

(𝑃𝐿𝐷𝑅) of the aerosols at 532 nm, as well as the fluorescence backscatter coefficient (𝛽𝑓𝑙𝑢𝑜) of the aerosols, and the water 

vapor mixing ratio, with a high temporal and vertical resolution (about 3 minutes and 7.5 m respectively). In order to maximize 

the signal to noise ratio, the quicklooks are averaged over a period of 1 hour. Only nighttime measurements have been 

considered for this study because of the low intensity of fluorescence and water vapor Raman signals, which makes it difficult 

obtaining accurate daytime measurement. 90 

In order to calibrate the water vapor mixing ratio measured by the lidar, the method developed by Foth et al. (2015) is used 

with a RPG-HATPRO microwave radiometer and temperature data obtained from the ERA-5 reanalysis model. The lidar water 

vapor mixing ratio calibration procedure is described in Miri et al. (2024). From this calibrated measurement and with the 

ERA-5 temperature, the atmospheric Relative Humidity (RH) is computed. 
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More details about the LILAS instrument and data management can be found in Hu et al. (2018) and Veselovskii et al. (2020). 95 

 

Quantity 𝜷
𝟓𝟑𝟐

 𝑷𝑳𝑫𝑹𝟓𝟑𝟐 𝜷
𝒇𝒍𝒖𝒐

 𝑹𝑯 

Units sr−1. m−1 ∅ sr−1. m−1 ∅, % 

Availability All All Night Night 

Time Resolution 

(initial) 
3 min 

 

Time Resolution 

(final) 
1 H 

 

Range Resolution  7.5 m 
 

Table 1: LILAS summary table of the various important quantities used in this study with their characteristics 𝜷𝟓𝟑𝟐 is the elastic 

backscatter coefficient of the aerosols at 532 nm, 𝑷𝑳𝑫𝑹𝟓𝟑𝟐  the 𝑷𝑳𝑫𝑹  of the aerosols at 532 nm, and 𝜷𝒇𝒍𝒖𝒐  the fluorescence 

backscatter of the aerosols. 

2.2 Choice of the model 100 

As explained in the introduction, the objective of this study is to develop a machine learning model able to automatically 

identify the aerosol type from LILAS measurement and which exploits the instrument ability to measure atmospheric 

fluorescence. In Veselovskii et al. (2022), an approach is proposed to distinguish between dust, urban, smoke and pollen 

aerosols using LILAS measurement. It is based on the aerosol 𝑃𝐿𝐷𝑅 at 532 nm, and the fluorescence capacity (𝐺𝑓𝑙𝑢𝑜), which 

is defined as the ratio 𝛽𝑓𝑙𝑢𝑜/𝛽532, to estimate the aerosol type, according to the classification represented Figure 1. 105 

 

Figure 1: Aerosol type with a depolarization/fluorescence capacity diagram. (adapted from Veselovskii et al. (2022)). 
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Based on this distribution, the Fluorescence Lidar based Aerosol REcognition from Gaussian Mixture Model (FLARE-GMM) 

algorithm has been developed to automatically estimate aerosol types from LILAS measurements using a data-driven machine 

learning approach. FLARE-GMM leverages a Gaussian Mixture Model (GMM), a probabilistic clustering method that models 110 

the data as a combination of several Gaussian distributions, to identify patterns in the datasets and facilitate robust 

classification. The algorithm considers the 𝑃𝐿𝐷𝑅 at 532 nm, RH, and the fluorescence capacity, to identify the aerosol type. 

One major advantage of machine learning is that it learns the decision boundaries from the data with statistical processes, 

thereby reducing reliance on manual thresholding and simplifying the analysis of complex, high-dimensional feature spaces. 

A notable challenge in aerosol classification, as highlighted by Veselovskii et al. (2022), is the influence of hygroscopic 115 

growth. This phenomenon, in which aerosol particles interact with moisture, consequently alters their optical properties as a 

function of relative humidity, can significantly compromise the accuracy of aerosol typing. By incorporating RH as an 

additional feature in the model, FLARE-GMM effectively accounts for the influence of hygroscopic growth, thus enhancing 

the reliability of the aerosol retrieval process under varying environmental conditions. 

Then, compared to other machine learning algorithms, GMM shows many benefits. Compared to K-means, a simpler clustering 120 

algorithm, GMM algorithms provide more detailed information and enable finer classification, at the cost of longer 

computation time. K-means is a non-probabilistic model that uses a hard-clustering approach, meaning that it gives a binary 

information about aerosol type, whereas GMMs are probabilistic models. This distinction allows GMMs to handle cluster 

overlap more efficiently than K-means, as well as better dealing with uncertainty, since clusters are represented by Gaussian 

distributions. This representation allows for better identification of outliers and data points near decision boundaries, a 125 

capability that K-means lacks since it only indicates the class to which each data point belongs (Bishop, 2006; Patel and 

Kushwaha, 2020). 

Eventually, compared to neural network methods, GMM also has many advantages. Neural networks are popular algorithms, 

allowing to solve very complex problems, and have been used in various occasions for aerosol typing (Nicolae et al., 2018; 

Papagiannopoulos et al., 2018; Voudouri et al., 2019). The ability of neural networks to solve complex problems lies in the 130 

number of their parameters, which can be important depending on the network complexity. However, the high number of 

parameters means that the computation time for training neural networks can be significant. Additionally, a very large training 

set is necessary to prevent overfitting, a strong limitation of these algorithms. Finally, neural networks are generally supervised 

models, implying that the training set already contains the expected aerosol type. Constituting the training set can therefore 

represent an important challenge if the classification of aerosols is performed manually, moreover considering that the training 135 

set size needs to be large in order to correctly train the neural network. This aspect has motivated researchers to work with 

simulated data, as it is the case for Nicolae et al. (2018), in order to work with a large training set containing the aerosol type 

of each data point. The advantage of GMM compared to neural networks lies in the ability to work with real, unclassified data, 

whereas neural networks require simulated labelled data for training. 

Nonetheless, the primary limitation of GMM is its foundational assumption that the data are generated by Gaussian processes. 140 

When the actual data distribution deviates from this assumption, accurately identifying clusters becomes problematic. Lidar 
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instruments (such as LILAS) often measure an averaged optical property over a volume containing mixtures of different aerosol 

types. In these cases, the recorded optical properties represent a convolution of the individual contributions from various 

aerosol sources. This convolution effect is not well modelled by GMM during the training phase, which may lead to biases in 

cluster determination, and is a huge challenge in the selection of the training set to correctly identify the different clusters. 145 

3. FLARE-GMM training 

3.1 Data preparation 

To correctly train GMM algorithms, the training set, composed of LILAS measurements from early 2021 to the end of 2023, 

needs to be pre-processed. Before rescaling the dataset to make sure that each variable contributes equally to the cluster 

identification, it needs to be filtered, as the presence of outliers in the training set can strongly impact the model. 150 

In order to filter LILAS data, the 𝑃𝐿𝐷𝑅 at 532 nm, 𝛽532, 𝐺𝑓𝑙𝑢𝑜, 𝑅𝐻 and the altitude have been considered. First concerning 

the 𝑃𝐿𝐷𝑅, situations in which the measured depolarization ratio is negative have been filtered out since negative values of 

𝑃𝐿𝐷𝑅 are non-physical. It means that a problem occurred during the profile inversion. This concerns about 5% of the dataset. 

Then, regarding the upper limit, we have chosen to fix it at 40%. This choice has been motivated by the maximum values 

reached by desert dust aerosols (Haarig et al., 2022). Pollen aerosols may exhibit higher 𝑃𝐿𝐷𝑅 values at 532 nm, up to 80% 155 

(Bohlmann et al., 2021), but, as it will be shown later, occurrences of pure pollen aerosols have not been observed in the 

dataset. Instead, pollen is often mixed with urban aerosols in the atmospheric boundary layer, making it difficult to reach such 

levels of depolarization. Situations for which the 𝑃𝐿𝐷𝑅 value reaches higher values than 40% may correspond then to ice 

clouds, which can be misclassified as desert dust aerosols otherwise. 

Then, 𝛽532 has also been used to filter the dataset. The objective here is to filter out cloudy cases which can alter the data, 160 

either by impacting the profile inversion, or due to the screen effect of optically thick clouds. Therefore, after some tests, we 

have chosen to filter out profiles for which 𝛽532 reaches over 10 Mm−1sr−1 to avoid cloudy situations. Moreover, 𝛽532 has 

also been used to filter situations with low aerosol load. It is important to remove these situations as performing aerosol typing 

if there is little to no aerosol is not relevant. But moreover, if 𝛽532 is low, the 𝑃𝐿𝐷𝑅 becomes very sensitive to measurement 

noise. Indeed, the depolarization is computed from a ratio between 𝛽532 measured in parallel and cross polarization states. 165 

Therefore, as these values decrease under low aerosol load conditions, the 𝑃𝐿𝐷𝑅 sensitivity to measurement noise increases 

and can reach outlier values. Hence, if 𝛽532 < 0.7 Mm−1sr−1, the case is filtered out from the training set. These upper and 

lower thresholds have also been applied to the results of FLARE-GMM, and these situations have been classified as “clouds” 

and “background”, respectively. 

Regarding 𝐺𝑓𝑙𝑢𝑜, the results from Veselovskii et al. (2022) and the observation of the LILAS data have been used to determine 170 

the various thresholds to filter outliers. In the dataset used for this study, smoke aerosols can have 𝐺𝑓𝑙𝑢𝑜 reaching up to 10−3. 

This value has then been chosen as the upper threshold for 𝐺𝑓𝑙𝑢𝑜, and cases exhibiting higher values have been filtered out. 
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For the lower threshold, a value of 9.10−6 has been selected. This choice has been motivated by observations of 𝐺𝑓𝑙𝑢𝑜 of urban 

and dust cases, which rarely fall below this threshold. Lower values of 𝐺𝑓𝑙𝑢𝑜 are typically observed only in clouds. This lower 

threshold is then a secondary filtering process enabling to exclude such conditions. 175 

Then, concerning 𝑅𝐻, negative values or values above 100% have been removed. This concerns about 0.5% of the dataset. 

And finally, only altitudes above 1000 m above ground level have been considered to ensure that LILAS overlap function is 

equal to 1, guaranteeing inversion quality. Similarly, only altitudes below 6000 m have been considered in the first place to 

maintain an acceptable signal-to-noise ratio for the 𝑅𝐻 data. 

A next step is to pre-process the data. The fluorescence capacity can vary on very large ranges (between 9.10−6 to 10−3), 180 

compared to 𝑃𝐿𝐷𝑅 and 𝑅𝐻, which typically vary within a single order of magnitude. This wide variation implies that some 

information may be lost during the rescaling process. To mitigate this effect, the base-10 logarithm of 𝐺𝑓𝑙𝑢𝑜 has been used as 

a feature for the GMM training. In this way, the range of 𝐺𝑓𝑙𝑢𝑜  is squeezed, reducing the disparity with other variables. 

Afterward, the training set has been rescaled by retracting the mean of the dataset and dividing by the variance, to ensure that 

each variable contributes equally to cluster identification. This rescaling step is crucial as it balances the influence of each 185 

variable in GMM, allowing the model to more effectively identify clusters without being dominated by any single variable. 

Quantity 𝛽532 𝑃𝐿𝐷𝑅 𝐺𝑓𝑙𝑢𝑜 𝑅𝐻 Altitude 

Maximum 

threshold 

10 sr−1Mm−1 

(profile removed) 
40% 10−3 100% 6 km 

Minimum 

threshold 
0.7 sr−1Mm−1 0% 9. 10−6 0% 1 km 

Table 2: Summary of the various thresholds used to filter the dataset in the first time 

3.2 Training set construction 

During the development of FLARE-GMM, multiple training datasets have been evaluated. In its current configuration, the 

training dataset comprises manually selected cases that are categorized into three subsets based on ambient humidity 190 

conditions. This categorization was implemented to address specific challenges encountered during the training. 

The first issue encountered was the presence of aerosol layers composed of mixed aerosol types. As already discussed, such 

mixtures are not well represented by GMM algorithms, since the measurements obtained by LILAS reflect a convolution 

between the Gaussian distributions of each individual aerosol component. This phenomenon results in data points being located 

in the interstitial spaces between clusters, complicating the identification process during the training phase. An initial attempt 195 

to mitigate this issue involved excluding the atmospheric boundary layer from the training dataset, because this region typically 

contains aerosol layers with mixed types. However, this approach was unsuccessful. Consequently, a manual analysis of each 

case has been operated to selectively include only cases featuring aerosol layers that are likely to be made up of a single aerosol 
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type rather than a mixture. This identification process relied both on the quadrant method described in Veselovskii et al. (2022) 

and shown in Figure 1, as well as an early version of FLARE-GMM, trained on the dataset excluding the boundary layer. 200 

The second challenge encountered was the representation of hygroscopic growth. As noted earlier, it alters aerosol optical 

properties under humid conditions, complicating the classification. To address this, 𝑅𝐻 was initially incorporated as a feature 

in FLARE-GMM. However, the resulting cluster identification was not what was expected. This has been interpreted as due 

to the fact that hygroscopic growth is not well modelled by a Gaussian distribution. Specifically, for a given aerosol, there is 

a bijective relationship between its optical properties and 𝑅𝐻. Consequently, the three-dimensional cluster in the [𝑃𝐿𝐷𝑅, 205 

fluorescence capacity, 𝑅𝐻] feature space adopts a cylindrical shape, since variations along the RH axis can be represented by 

a translation. This contradicts the GMM assumption that clusters follow a 3D Gaussian distribution. To mitigate this issue, the 

dataset has been partitioned into three subsets based on humidity levels and three distinct models have been trained: one for 

dry conditions, one for high-humidity conditions, and one for intermediate conditions. Dry data points have been selected for 

𝑅𝐻 < 60%, very humid data points for 𝑅𝐻 > 80%, and data with 60% < 𝑅𝐻 < 80% have been attributed to the dataset 210 

corresponding to medium conditions. This repartition has been decided after running some tests. The challenge is to balance 

between having as many subsets as possible to correctly consider the impact of hygroscopic growth on the aerosol optical 

properties, while also providing that each aerosol class is well represented with enough data points in each section, to correctly 

train the model. The other benefit of this method is that only two features are used, which allows us to visualize the data and 

clusters much more easily. 215 

Figure 2 shows the 2D histograms of the different sections of the training set in function of the 𝐺𝑓𝑙𝑢𝑜 and 𝑃𝐿𝐷𝑅. Each section 

contains 4719, 9970 and 2475 datapoints for the dry, medium and wet sections respectively, which is enough to correctly train 

FLARE-GMM without risking any overfitting. 

By comparing each subplot of Figure 2 to Figure 1, it is possible to check if the different aerosol types are correctly represented 

in the dataset. While it is possible to visually attributed clusters to urban, smoke and dust aerosols in each case, it is interesting 220 

to notice that it is not possible for pollens. This can be explained by the fact that in Lille, pollens are generally emitted locally 

at low altitudes. It follows is that pollen aerosols are mainly located bellow the limit of altitude detection of LILAS which is 

around 1km. A second consequence is that in most cases, pollens are mixed with urban aerosols, making impossible to identify 

pure pollen aerosol layer in this dataset.  

Figure 2 also shows a tendency of the urban and smoke clusters to be shifted towards lower values as 𝑅𝐻 increases. This is a 225 

direct illustration of the hygroscopic growth impact on aerosol optical properties, which can be clearly observed in this 

situation. 
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Figure 2: 2D histograms of the training set containing hand-selected data of pure cases as a function of 𝑹𝑯 levels (a) below 60 % (b) 

between 60 % and 80 %, (c) over 80%, (d) all data 230 

The silhouette coefficient method (Dinh et al., 2019; Zhou and Gao, 2014), shown in the Appendix, has been used on each 

section of the dataset, to determine the ideal number to clusters. In each case, the obtained number is 3, in agreement with what 

we were expecting from the observation of the dataset 2D histograms. 

FLARE-GMM models have been trained on each section of the training set. The results of the training set data repartition are 

displayed on Figure 3. We see that the different clusters are well defined and separated in each case. The association of each 235 

cluster to its aerosol type, urban, smoke and dust, is not ambiguous and can be performed straightforwardly. 
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Figure 3: Data repartition of the training set sections with the different versions of FLARE-GMM trained on these sections (a) 

section with 𝑹𝑯 < 60 %, (b) 60 % < 𝑹𝑯 < 80 %, (c) 𝑹𝑯 > 80 %, each colour is associated to a Gaussian distribution determined by 

FLARE-GMM 240 

However, this distribution suffers from some limitations. First, it relies on a limited dataset and thus, the resulting model may 

not perform adequately on unseen data. For a robust generalisation, the training set should encompass all the potential scenarios 

that the model might encounter in practice. The manual selection process inherently restricts the diversity and size of the 

dataset, which can compromise the model ability to accurately classify new data. 

The second issue concerns the management of mixed aerosol layers. If multiple aerosol types coexist within the same resolution 245 

volume, data points may lie near the boundaries of several clusters. Without proper handling, the automatic aerosol typing 

model might inadvertently assign these mixed cases to the most prevalent aerosol class simply because the data points are 

closest to its corresponding cluster.  

In order to address these issues, the likelihood function can be used. It is defined as:  
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𝑃(𝑥) =  ∑ 𝜋𝑗
𝐾
𝑗=1 𝒩(𝑥|𝜇𝑗 , 𝜎𝑗),         (1) 250 

Where 𝜋𝑗 are the weights of each Gaussian and 𝒩(𝑥|𝜇𝑗, 𝜎𝑗) correspond the Gaussian distribution j (of mean 𝜇𝑗 and standard 

deviation 𝜎𝑗) evaluated in the point x. This function can be interpreted as the probability that 𝑥 has been generated by a 

Gaussian distribution of the model. Therefore, by choosing a threshold on the likelihood value, it is possible to balance between 

enlarging the clusters to mitigate the impact of the limited training set and excluding mixture cases and outliers from the 

repartition process. Indeed, if a low likelihood value is chosen as threshold, the resulting clusters will be narrower, enhancing 255 

the reliability of the aerosol typing estimation by FLARE-GMM, however in the same time, narrow clusters means that the 

model will have more difficulty to identify cases that were not in the training set and cases with higher measurement 

uncertainty. On the other hand, if a high likelihood value is chosen, the clusters will be wider, allowing to identify more cases 

that are potentially not contained in the training set, but potentially decreasing the reliability and the accuracy of the model. 
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 260 

Figure 4: Data repartition of the training set sections with the different versions of FLARE-GMM trained on these sections (a) 

section with 𝑹𝑯 < 60 %, (b) 60 % < 𝑹𝑯 < 80 %, (c) 𝑹𝑯 > 80 %, each color is associated to a Gaussian distribution determined by 

FLARE-GMM, with the representation of the negative log likelihood contour lines (−𝒍𝒏(𝑷(𝒙)))  

Figure 4 shows the contour lines of the negative log likelihood field, i.e. −𝑙𝑛(𝑃(𝑥)), as a function of the rescaled features. 

This figure has been analysed in order to select the optimal threshold of  −𝑙𝑛(𝑃(𝑥)), and correctly filter out mixture cases and 265 

outliers, while also widening the clusters to consider the limits of the training set. Finally, the threshold has been fixed at 8. 

This value has been chosen after running tests and allows for unseen cases, for which −𝑙𝑛(𝑃(𝑥))  is generally below 8, to be 

correctly classified, while also excluding mixture cases and outliers, for which −𝑙𝑛(𝑃(𝑥)) is generally over 8. 
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Another benefit of this model is that it can be used at high altitudes, where 𝑅𝐻 is much more difficult to obtain accurately. In 

order to use FLARE-GMM above 6 km, altitude above which 𝑅𝐻 cannot be measured by LILAS, we have decided to use the 270 

driest model to classify cases. The reason is that lidar can measure fluorescence and depolarization at very high altitudes, and 

in clear sky conditions, the 𝑅𝐻 level being typically lower at these altitudes. Consequently, hygroscopic growth cases are 

rarely detected at high altitudes. This encourages us to use a dry aerosol model for aerosol typing in such cases, allowing ut to 

perform aerosol typing up to 15 km during the night. 

Eventually, we see that the cluster associated with urban aerosols and the one associated with smoke particles are very close 275 

to each other. Moreover, there is no separation between them once the negative log likelihood criterion is applied. This makes 

it currently very difficult to differentiate layers containing a mixture of urban and smoke cases from a layer containing pure 

particles of one aerosol type. Instead, FLARE-GMM can estimate which aerosol type has the stronger contribution to the 

mixture optical properties. In our case, it is not possible to improve this result, as the clusters are too close. The use of other 

optical properties in future studies, such as the 𝐿𝑅 or the Ångström exponent, could help to solve this issue. 280 

4. Generalisation of FLARE-GMM 

The objective of this section is to generalise FLARE-GMM. To do so, its results have been compared to aerosol type obtained 

from other methods for unseen cases. In the first part, it concerns cases of extreme events in which the aerosol type is not 

ambiguous and that has already been documented by other studies. In the second part, FLARE-GMM is compared to NATALI, 

another automatic aerosol typing model based on lidar data, which uses a neural network. 285 

4.1 Classification of specific events 

Assessing the accuracy of clustering models such as GMM can be challenging in the absence of definitive reference. In this 

section, an analysis of specific events has been performed to have an idea of the algorithm performances to identify aerosol 

types from LILAS data. 

Our initial approach involves exploring FLARE-GMM aerosol typing estimation in instances where aerosol types are not 290 

ambiguous and easily identified. These scenarios mainly manifest during specific events of dust or smoke occurrences. 

Fortunately, the region of Lille frequently experiences such events, which are consistently documented and analysed by the 

LOA, and which origins can be checked from backward trajectories (Baars et al., 2019; Draxler et al., 2023; Stein et al., 2015). 

The first event analysed in this section occurred during the night between 15 and 16 March 2022. In this period, strong 

manifestations of Sirocco winds have been experienced. They are responsible for the advection of Saharan desert dust over 295 

Europe. Consequently, desert dust can be observed in Lille during such events (Husar, 2004; Stohl et al., 2004). The backward 

trajectory for this night (see Appendix) confirms that the air mass above Lille came from the Saharan region, thus supporting 

the fact that desert dust is expected to be observed in Lille.  
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Figure 5: FLARE-GMM aerosol type estimation quicklook during the night between 15 and 16 March 2022 between 1000 m and 300 
15000 m 

On the other hand, Figure 5 shows the quicklook of FLARE-GMM aerosol type estimate during the night between 15 and 16 

March 2022. Background and cloud classes are automatically attributed when 𝛽532  < 0.5 Mm−1. sr−1  or 𝛽532  < 

15 Mm−1. sr−1 respectively, while the unknown class gathers the outliers and mixture cases for which −𝑙𝑛(𝑃(𝑥)) > 8. Figure 

5 shows that after 00:00 UTC on 16 April 2022, an aerosol layer was present below 3000 m, with clouds at the top of the layer. 305 

FLARE-GMM estimates that these aerosols are certainly desert dust aerosols, which is consistent with the backward 

trajectories as well as the analyses and the different reports made on this particular situation (Bouteiller, 2022). FLARE-GMM 

aerosol typing estimate concurs with the expected result in this case, supporting the fact that FLARE-GMM is able to identify 

desert dust aerosols in such events. 

The second case used in this study occurred during the night between 2 and 3 March 2021. Similarly to the previous case, 310 

strong Sirocco winds were responsible for the transport of Saharan desert dust over Europe. The backward trajectory for this 

case (see Appendix) shows that the air mass in Lille during this night originated from the North African region, supporting the 

presence of desert dust in the atmosphere. Figure 6 shows the quicklook of FLARE-GMM aerosol type estimate for this case. 

Here, FLARE-GMM identifies desert dust aerosols in a layer spanning from 2000 m to almost 7000 m. Clouds can also be 

observed after 00:00 UTC, ranging from 3000 m to 10000 m, while the lowest part of the atmosphere is associated with 315 

unknown aerosol type, which could correspond to a mixture between desert dust and urban aerosols in the boundary layer. 

Such as the previous studied case, in this situation, the ability of FLARE-GMM to correctly identify desert dust aerosol layers 
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is illustrated here, as FLARE-GMM aerosol typing estimate corresponds to the aerosol type expected from backward trajectory 

and previous analyses (Veselovskii et al., 2022). 

 320 

Figure 6: FLARE-GMM aerosol type estimation quicklook during the night between 2 and 3 March 2021 between 1000 m and 15000 

m 

The last case investigated in this part occurred during the night of 19 July 2022. Significant forest fires occurred in the 

Gascogne region in south-eastern of France. The winds blowing northward during this event transported biomass burning 

aerosols to Lille. This can be clearly observed in Figure 7 where both the fire map and the backward trajectory are represented. 325 

Figure 7 (a) shows the backward trajectory in this situation and Figure 7 (b) the fire map between 14 and 19 July 2022, obtained 

from the Fire Information for Resource Management System (FIRMS), which uses data from MODIS and the Visible Infrared 

Imaging Radiometer Suite (VIIRS), and is managed by NASA (source: https://firms.modaps.eosdis.nasa.gov/, last access: 28 

June 2024). On this map is also highlighted the fire data corresponding to the forest fires that occurred in the Gascogne region 

at this period. Analysing both these figures, it is possible to observe that biomass burning aerosols emitted from the forest fires 330 

have been transported to Lille during this period. On the other hand, Figure 7 (c) shows the aerosol typing estimate from 

FLARE-GMM during the night of 19 July 2022. This figure shows that FLARE-GMM correctly recognizes the presence of a 

smoke layer ranging from 2000 m to 6000 m with the presence of unknown aerosols in the lower part of the atmosphere, which 

could correspond to a mixture with another aerosol type like urbans, or to outliers. Nevertheless, this case illustrates well the 

ability of FLARE-GMM to identify smoke layers in such conditions, supporting its efficiency and generalisation. 335 
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Figure 7: (a) Backward trajectory of 24 hours at 4000 m above ground level at 22:00 UTC on 19 July 2022 (b) Fire map from the 

Fire Information for Resource Management System (FIRMS) between 14 to and 19 July 2022 (source: 

https://firms.modaps.eosdis.nasa.gov/, last access: 28 June 2024) (c) FLARE-GMM aerosol type estimation quick-look during the 

night of 19 July 2022 between 1000 m and 15000 m 340 
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These three presented cases allow for the evaluation of the performance of FLARE-GMM in occurrences of strong events. In 

these situations, the aerosol type estimated by the algorithm is consistent with the expected aerosol type observed in the 

atmosphere. The ability of FLARE-GMM to correctly identify aerosol types in such cases is thus supported by these examples. 

However, this approach is limited since it uses a low number of specific situations, which is therefore not ideal to evaluate the 

algorithm performance in general. In order to complete this approach, in the absence of absolute reference for the estimate of 345 

the aerosol type with lidar data, FLARE-GMM can be compared to another automatic aerosol typing method which uses lidar 

data. 

4.2 Comparison with NATALI aerosol typing 

Neural Network Aerosol Typing Algorithm Based on Lidar Data (NATALI) is a deep learning algorithm developed to estimate 

the most probable aerosol type from lidar data. This algorithm uses the EARLINET 3𝛽 +  2𝛼 (+1𝛿) profiles, which are 350 

multispectral profiles that can be obtained from LILAS and are regularly inverted. NATALI has been trained on synthetic data, 

using the aerosol Ångström exponent, colour index, colour ratios, 𝐿𝑅 and 𝑃𝐿𝐷𝑅 of the aerosols as features to perform aerosol 

typing. From these properties, the algorithm is able to determine aerosol type among continental, continental polluted, smoke, 

dust, marine and volcanic (Nicolae et al., 2018). 

In this section, a comparison between NATALI and FLARE-GMM is presented so as to evaluate how both models perform 355 

compared to one another on LILAS data. 36 cloud-free profiles from 2022, covering different situations and aerosol types have 

been selected randomly to compare FLARE-GMM and NATALI estimates. Figure 8 shows the confusion matrix between the 

two aerosol type estimates. Confusion matrices are usually used to evaluate the performance of a classification algorithm. They 

display the counts of true positives, true negatives, false positives, and false negatives, helping to assess the accuracy, precision 

and overall models performance. In this case, this matrix can be used to compare the results from the two models, analyse their 360 

agreements and discrepancies. 

The confusion matrix indicates that the agreement rate between the two models is at 38 %. This rate is acceptable given that 

the two models use different features for classification and differ in their algorithmic structure. Indeed, NATALI is a supervised 

learning algorithm, while FLARE-GMM is unsupervised. Regarding the disagreements between FLARE-GMM and NATALI, 

we can first evidence the confusion that exists between smoke and urban, or continental aerosols. Indeed, in a substantial 365 

number of cases, NATALI and FLARE-GMM disagree between smoke and urban aerosols. This confusion has been expected 

since the optical properties of smoke and urban aerosol are close, as evidenced in the former section. 
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Figure 8: Confusion matrix between FLARE-GMM and NATALI aerosol type estimation on 36 profiles from 2022 

Moreover, we can notice that most cases identified as desert dust by FLARE-GMM are classified differently by NATALI, 370 

either as smoke (in 570 cases) or as marine aerosols (in 311 cases). This confusion is more surprising since desert dust optical 

properties are supposed to be different from these aerosol types. In particular, desert dust 𝑃𝐿𝐷𝑅 at 532 nm is expected to range 

close to 30 %, while smoke and marine aerosols are expected to exhibit much lower 𝑃𝐿𝐷𝑅 at this wavelength.  

These differences between FLARE-GMM and NATALI can be explained by several factors. First, it could be a consequence 

of the difference between the two algorithms. As mentioned above, NATALI is a supervised learning model that has been 375 

trained on synthetic data, as opposed to FLARE-GMM that is an unsupervised learning model which has been trained using 

data from LILAS instrument specifically. This aspect is an advantage for FLARE-GMM as the specificities of the site in Lille, 

as well as the specificities of the instrument are therefore inherently integrated in the model. On the other hand, NATALI, 

which has been trained on synthetic data, might contain biases from the model used to simulate the aerosol optical properties. 

Moreover, the features used by NATALI might explain these differences with FLARE-GMM estimates. Indeed, NATALI uses 380 

the 𝐿𝑅 and the Ångström exponent, which both rely on extinction coefficients estimations. However, these properties are 

difficult to determine accurately with the Raman inversion, performed on the EARLINET profiles. These quantities often 

exhibit high uncertainties (Ansmann et al., 1992) thus impacting NATALI estimate quality. This might explain why NATALI 

predicts the presence of marine aerosols while the measurement site is located 70 km away from the coast, thus making it 

unlikely to observe aerosol layers mainly composed of marine particles. The case represented Figure 9 illustrates this situation. 385 

In this figure, both 𝐺𝑓𝑙𝑢𝑜 and PLDR indicate that the aerosol layer is primarily composed of dust aerosols, characterized by a 
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high depolarization ratio and low fluorescence capacity. FLARE-GMM correctly classifies most of the aerosol layer as dust. 

However, NATALI, which primarily relies on the Lidar Ratio (LR) and the Ångstrom exponent for aerosol type identification, 

classifies this aerosol layer as a combination of smoke and marine aerosols. This classification appears unlikely, particularly 

given the high depolarization ratio, suggesting that in this case, the Ångstrom exponent and Lidar Ratio may not be accurate 390 

enough for aerosol type estimate. This example highlights the challenges of using parameters like LR and Ångstrom exponent, 

which are highly sensitive to measurement noise, for aerosol classification, and shows that properties such as fluorescence 

capacity and depolarization ratio provide more reliable information to perform aerosol characterization. 

 

Figure 9: LILAS lidar profiles on 21 March 2022 at 21:00 UTC and comparison between FLARE-GMM and NATALI aerosol types 395 
estimations 

The treatment of hygroscopicity can also be responsible for the differences between NATALI and FLARE-GMM aerosol 

typing estimates. This phenomenon, which significantly alters aerosol properties, is taken into account by NATALI in the 

training set, as it is modelled according to different 𝑅𝐻 levels, but 𝑅𝐻 is not used as an input to determine the aerosol type 

(Nicolae et al., 2018). On the other hand, as FLARE-GMM uses real data in the training set, it covers a wide range of humidity 400 

levels, and furthermore, even if 𝑅𝐻 is not used as a feature, its influence on aerosol optical properties is considered with the 

use of different trained modeled in function of the 𝑅𝐻 levels. These differences of treatment can be responsible for important 

differences between the two estimates, especially between urban and smoke aerosols, as their optical properties can be difficult 

to distinguish if humidity is not considered. 
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Nevertheless, the comparison between FLARE-GMM and NATALI allows us to compare FLARE-GMM performance to 405 

another automatic aerosol typing model. While the comparison suffers from limitations that have been raised, making it 

challenging to formulate clear interpretations and conclusions, it is still providing encouraging results. Indeed, despite their 

differences, in terms of architecture, training methods and datasets used to perform the classification, the agreement rate 

between the two models is almost 40 %. Moreover, discrepancies between NATALI and FLARE-GMM can find explanations 

in many factors that have been mentioned. Therefore, this comparison, with the analysis of extreme events performed are 410 

promising for FLARE-GMM performances. They also provide a positive outlook for its potential future improvements and 

advancements, indicating that the model is robust and can continue to be improved. 

5. Aerosol type analysis in Lille 

In this section, FLARE-GMM is used to analyse aerosol type estimates in Lille on all the available dataset. The advantage of 

developing an automatic aerosol typing method is that such analyses are easily performed quickly on a very large amount of 415 

data. The results can then be analysed to study aerosol properties in Lille, and evaluate potential trends. 

By using FLARE-GMM on the LILAS dataset from 2021 to 2023, we can investigate the aerosol type repartition, as well as 

the seasonality of the aerosols in the Lille region. To do so, the aerosol type has been estimated by FLARE-GMM for each 

available profile between 2021 and 2023. Each profile containing more than 15 data points classified as a specific aerosol type 

have been considered in order to avoid treating outliers. Eventually, the considered altitudes for this analysis have been selected 420 

below 6 km. This choice has been motivated to avoid taking cirrus clouds into account, which might be classified as dust 

aerosols by FLARE-GMM due to their high depolarization and low fluorescence. Indeed, cirrus clouds often show low optical 

thickness and are therefore more complicated to differentiate from aerosols by using a criterion on the elastic backscatter 

coefficient. By considering only the data below 6 km, it is possible to mitigate the impact of cirrus clouds in the statistics while 

also considering most of the aerosol cases, which are in majority present in low altitudes. 425 
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Figure 10: (a) Violin plots and (b) Box plots of averaged altitudes, between the ground and 6 km above ground level as a function of 

the aerosol type for all the available data from 2021 to 2023 

First, it can be interesting to investigate the altitude distribution for each aerosol type. Figure 10 shows the violin plots (a) and 

the box plots (b) of the averaged altitudes above the ground of the identified aerosol layers as a function of the aerosol type. 430 

This plot indicates that both urban and smoke aerosols are predominantly detected at low altitudes, mainly within the boundary 

layer. The distribution for smoke aerosols exhibits a longer tail compared to urban aerosols. This is expected, as smoke 

aerosols, generally originating from fires, are emitted at high temperatures and can be injected into higher altitudes. In contrast, 

urban aerosols usually remain confined to the boundary layer and rarely reach higher altitudes. Regarding dust aerosols, their 

distribution shows that they can be present at much higher altitudes. This result can be interpreted in different ways. First, it 435 

could be a consequence of ice cloud detection, however, below 6 km, the presence of ice clouds is less probable in the Lille 

atmosphere. This could also be due to the fact that the primary sources of dust in Lille are not local. Unlike urban and smoke 

aerosols, which may be emitted locally, dust often originates from the Sahara or other deserts and is carried to Lille by the 

wind. As a result, dust particles are found at more dispersed altitudes compared to urban and smoke aerosols. 

Figure 11 (a) shows the histogram of FLARE-GMM aerosol type estimates on all the available data below 6000 m as a function 440 

of time. This figure shows that in general, more aerosol layers are identified during spring and summer. This situation is 

influenced by Lille's meteorology, as it often rains in this region during winter. LILAS does not measure during rain, which 

reduces the amount of available data for analysis. Additionally, during winter, the boundary layer is generally lower due to 

decreased temperatures. Given that the minimum considered altitude is 1000 m, aerosol layers may not be detected, further 

limiting the data. 445 
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Figure 11: (a) Histogram of aerosol type estimate from FLARE-GMM as a function of the time and (b) share of each aerosol 

according to the season, with all data from 2021, 2022 and 2023 below 6000 m above ground level 

Figure 11 (b) shows the seasonal share of each aerosol type estimated by FLARE-GMM. This figure first illustrates that urban 450 

aerosols are the main aerosol type in the Lille atmosphere, and represent more than half cases in each season. This result is 

expected as the LOA is close to the city of Lille, the emission of urban aerosols by human activity is therefore the first aerosol 

source in the observed atmosphere. Regarding smoke aerosols, Figure 11 (b) indicates that they are significantly more frequent 

during spring and summer compared to fall and winter. This trend can be attributed to higher temperatures in spring and 

summer, which increase the likelihood of fires, the primary source of smoke aerosols, occurring during these periods. 455 

Eventually, regarding dust aerosols, they are the least represented aerosol type. This is because dust scenarios are rare in Lille, 

which is not located close to a source of desert dust. The occurrence of dust cases in Lille are rather due to extreme events 

such as advection of Saharan dust by Sirocco winds as mentioned previously. Such events generally occur early in spring or 

in winter, and it is possible to observe that dust cases are more represented at these periods, thus confirming the importance of 
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these phenomena in the observation of dust aerosols in Lille. However, it is important to consider the proportion of dust cases 460 

in winter within the context of data availability limitations during this season. Additionally, the colder temperatures in winter 

increase the likelihood of observing ice or mixed-phase clouds below 6000 m. These clouds can occasionally be misinterpreted 

as desert dust aerosols with the current classification method, as it has been mentioned. Despite these challenges, these findings 

are crucial for gaining insights into the composition and distribution of aerosols in the region, showing the benefits from using 

an automatic aerosol typing process like FLARE-GMM. 465 

Conclusion 

In this study, we developed FLARE-GMM, a machine learning-based aerosol typing algorithm using lidar measurements from 

LILAS. By leveraging a Gaussian Mixture Model (GMM) trained on fluorescence capacity, depolarization ratio, and relative 

humidity, FLARE-GMM effectively classifies aerosol types between urban, dust and smoke, while addressing challenges such 

as hygroscopic growth and mixed aerosol layers. 470 

A key advantage of FLARE-GMM lies in its ability to work with real, unclassified data, unlike supervised models that rely on 

synthetic training sets. Through a thorough evaluation using extreme aerosol events and comparison with the neural network-

based NATALI algorithm, FLARE-GMM has demonstrated promising classification capabilities. However, certain limitations 

remain, notably in distinguishing urban and smoke aerosols in mixed layers and in the treatment of hygroscopic growth, but 

most importantly regarding the construction of the training set which has to be performed manually. 475 

Applying FLARE-GMM to the full LILAS dataset from 2021 to 2023 provided valuable insights into the seasonal variability 

of aerosols over Lille, highlighting the dominance of urban aerosols and the episodic occurrence of smoke and dust events.  

Due to the adaptable nature of this classification method, FLARE-GMM is well-suited to accommodate future technological 

advancements or algorithmic updates. For example, the new lidar system of LOA, LIFE (Laser Induced Fluorescence 

Explorer), operational since the end of 2024, will offer enhanced power and the ability to measure fluorescence across different 480 

wavelengths. This new capability is crucial for more accurate aerosol identification and will significantly deepen our 

understanding of aerosol types. By applying a protocol similar to the one detailed in this paper, it would be feasible to develop 

an updated version of FLARE-GMM that uses the LIFE dataset for training, further enhancing its capabilities and accuracy in 

aerosol typing. Finally, in order to assess the robustness of this approach to perform aerosol typing, it could be tested on another 

instrument also measuring aerosols but in a different environment than Lille, to confront its viability in the presence of other 485 

aerosol types such as marine, volcanic aerosols or pollen in higher quantity. 

To effectively train future models using real data, it is essential to account for mixtures of different aerosol types. Instead of 

assuming that the training set is generated by a set of independent Gaussian distributions, an alternative approach would be to 

model data points as resulting from convolutions of multiple Gaussian distributions. This would enable the use of a 

significantly larger portion of the dataset, with only outliers being excluded. However, implementing such an approach would 490 
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necessitate more complex models with a larger number of parameters, increasing both computational demands and the 

complexity of the training process. 

To conclude, this study underscores the potential of fluorescence lidar in aerosol classification and the benefits of unsupervised 

learning approaches for atmospheric studies. Future work will focus on improving aerosol mixture identification and 

incorporating additional optical parameters to refine classification accuracy. 495 
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Appendix 

 610 

Figure A1: Silhouette coefficient from K-Means partitions for a number of clusters ranging from 3 to 8 on the sections of the training 

set (a) cases with RH < 60 %, (b) 60 % < RH < 80 %, (c) RH > 80 % 
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Figure A2: 100 hours backward trajectory at 1500 m above ground level at 03:00 UTC on 16 March 2022 
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Figure A3: 100 hours backward trajectory at 3000 m above ground level at 22:00 UTC on 2 March 2021 
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